

FOR INDUSTRIAL USE.

TRANSDUCER

PLUG-IN TYPE

TOYO KEIKI CO., LTD.

TABLE OF CONTENTS

GP AND HP SERIES OUTLINE EXPLANATION			3
AC CURRENT TRANSDUCER	AGP		4
AC VOLTAGE TRANSDUCER	VGP		5
FREQUENCY TRANSDUCER	FGP		6
WATT TRANSDUCER	EHP		7,8
VAR TRANSDUCER	RHP		9,10
POWER FACTOR TRANSDUCER	NHP		11,12
ISOLATOR	DGP		13
2-OUTPUT TYPE ISOLATOR	DXP		14
HIGH SPEED ISOLATOR	DGP−□F		15
TEMPERATURE TRANSDUCER	CGP		16,17
TEMPERATURE TRANSDUCER	JGP		18,19
POTENTIOMETER TRANSDUCER	KGP		20
rpm TRANSDUCER	TGP		21,22
DC-PULSE TRANSDUCER	EGP		23
OUTSID VIEW			24
ACCESSORIES OUTSID VIEW			25
WORKING CONDITIONS		•••••	26
GS, GM AND LS SERIES OUTLINE EX	(PLANATION		27
AC CURRENT TRANSDUCER	AGS	•••••	28
AC VOLTAGE TRANSDUCER	VGS		29
WATT TRANSDUCER	EGM		30,31
VAR TRANSDUCER	RGM		32,33
POWER FACTOR TRANSDUCER	NGM		34,35
FREQUENCY TRANSDUCER	FGS		36,37
AC CURRENT TRANSDUCER	ALS-OCA ALS-OA		38
AC VOLTAGE TRANSDUCER	VLS-OCA		39
AC CURRENT TRANSDUCER	ALS		40
AC VOLTAGE TRANSDUCER	VLS		41
ISOLATER	DGS		42
OUTSID VIEW			43
WORKING CONDITIONS		•••••	44

GP AND HP SERIES SIGNAL CONVERTER

GP and HP series signal converters provide unifrom DC signals for mesurement from various types of electric signal.

GP and HP series signal converters are based electrical transducers, such as the L series and G series, with track records going back many years. They are compact signal converters that are small and light.

GP and HP series signal converters use fire resistant plastic throughout and are transducers you can safely use.

GP and HP series signal converters are designed plug-in type makes upkeep and changes in configuration simple.

designation	type	input signal	note
AC current transducer	AGP-□□	AC current	Mean value type,With limiter
AC current transducer	AGP−□E□	AC current	Root-mean-sqare value type,With limiter
AC voltage transducer	VGP-□□	AC voltage	Mean value type,With limiter
Ac voltage transducer	VGP-□E□	AC voltage	Root-mean-sqare value type,With limiter
Frequency transducer	FGP-□	Frequency	For commercial frequency use
	EHP-□1	1 <i>∲</i> 2W watt	
Watt transducer	EHP−□2	1 <i>∲</i> 3W watt	Root-mean-sqare value operation type
	EHP-□3	3∮ 3W watt	
	RHP-□1	1 <i>∲</i> 2W var	
Var transducer	RHP−□2	1∳ 3W var	Root-mean-sqare value operation type
	RHP−□3	3∳ 3W var	
	NHP-□1	1∲ 2W p. f.	
Power factor transducer	NHP−□2	1∲ 3W p. f.	Watt and var operation type
	NHP-□3	3∮ 3W p. f.	
Isolater	DGP-	DC cur., volt.	With limiter
2output type Isolater	DXP-	DC cur., volt.	With limiter
High speed Isolater	DGP-□F□	DC cur., volt.	With limiter
Temperature transducer	CGP-□	Vt 100Ω other	Resistance temperature detector type
Temperature transducer	JGP-□	Thermocouple	Built in cold junction compensation
Potentio transducer	KGP-□	Potentiometer	
rpm. transducer	TGP-□□	Frequency	AC signal and pulse sequence signal
DC-pulse transducer	EGP-□	DC cur., volt.	
Attachment	ZGP-□□		For GP series
Allachment	ZHP-B		For HP series

AC CURRENT TRANSDUCER

AGP-: Mean value type

AGP-\B : Mean value type, With limiter AGP-□E : Root-mean-sqare value type

AGP─**EL**: Root-mean-sqare value type,With limiter

Plug-in type makes upkeep and changes in configuration simple. Improved reliability and greater compactness through the use of custom ICs. JIS C 1111 AC/DC transducer 0.5 class.

SPECIFICATION

INPUT, CONSUMPTION WATT	OUTPUT	AUXILIARY POWER SUPPLY
0~5A 50∕60Hz 0~1A 50∕60Hz approx. 0.5VA	8 standard type of ouput are available	AC 100/110V ±10% 50/60Hz approx. 2.5 VA AC 200/220V ±10% 50/60Hz approx. 2.5 VA
Max.input Available with range 0.1 ∼5A Available with frequency range 45 ∼	Available with Max.voltage output 10V $(600~\Omega{\sim}\infty)$ Max.current output 20mA $(0~\sim550\Omega)$	DC 24V ±10% approx. 2.5 W DC 100/110V ±10% approx. 3 W types are immediately available. For types not listed above contact a company representative.

SPECIFIC CHARACTER

(1) Tolerance

±0.5% of output span. (Ambient temperature 23°C)

(2) Effect of temperature

Within $\pm 0.5\%$ of output span. (For 23°C ± 10 °C variations)

(3) Effect of auxiliary power supply

Within $\pm 0.25\%$ of output span. (For rated voltage $\pm 10\%$ variations)

(4) Effect of frequency

Within $\pm 0.25\%$ of output span. (For standard frequency $\pm 5\%$ variations)

(5) Effect of load resistance

Within $\pm 0.05\%$ of output span. (For load resistance range)

(6) Output ripple

Within 1%p-p of output span.

(7) Response time

Shorter than 1sec. (Time to 99% output)

(8) Effect of wave from (AGP-□E□ type only)

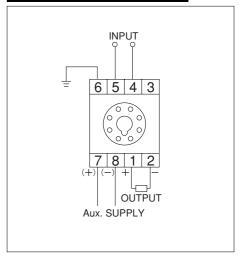
Within $\pm 0.5\%$ of output span.

(For third harmonics equivalent to 15% of the basic frequency)

(9) Dielectric strength

2000V AC,1min.(50/60Hz)

(Between input, output, auxiliary power supply and external case)


(10) Insulation resistance

Higher than $100M\Omega$ at 500V megger.

(Between input, output, auxiliary power supply and external case)

Approx.410g

CONNECTION DIAGRAM

ACCESSORIES

When removed from socket, to prevent the CT secondary circuit from remaining open use the proper accessory parts

> AC 5A: ZGP-B1 AC 1A: ZGP-B2

DESIGNATION ITEM AT ORDER

1. TYPE AND AUXILIARY POWER SUPPLY	2. INPUT	3. OUTPUT
AGP-□ AGP-□L AGP-□E AGP-□EL	-	-0

	AUXILIARY POWER SUPPLY		
1	DC 24V		1
2	AC 100V/110V 50/60Hz		2
3	AC 200V/220V 50/60Hz		9
5	DC 100V/110V	ľ	

	INPUT	FREQUENCY
1	AC 0 ~ 5 A	50/60Hz
2	0 ~ 1 A	50/60Hz
9	OTHER INPUT	

	OUTPUT	LOAD RESISTANCE
1	DC 0 ~ 100mV	600Ω ~ ∞
2	DC 0~ 1 V	600Ω ~ ∞
3	DC 0~ 5 V	600Ω ~ ∞
4	DC 0 ~ 10 V	600Ω ~ ∞
5	DC 1 ~ 5 V	600Ω ~ ∞
6	DC 0 ~ 1mA	0 ~ 10kΩ
7	DC 0 ~ 10mA	0 ~ 1kΩ
8	DC 4 ~ 20mA	0 ~ 550 Ω
9	OTHER	ROUTPUT

ORDER EXAMPLE

① AGP-1-1-8 ② AGP-2E-9-9

INPUT : AC 0~0.5A, OUTPUT : DC 0~7.5V

*For special specifications please consult company representatives

AC VOLTAGE TRANSDUCER

VGP─☐ : Mean value type

VGP-☐E: Root-mean-sqare value type

Plug-in type makes upkeep and changes in configuration simple. Improved reliability and greater compactness through the use of custom ICs. JIS C 1111 AC/DC transducer 0.5 class.

SPECIFICATION

INPUT, CONSUMPTION WATT	OUTPUT	AUXILIARY POWER SUPPLY
0~150V 50∕60Hz 0~300V 50∕60Hz approx. 0.5VA	8 standard type of output are available	AC 100/110V ±10% 50/60Hz approx.2.5 VA AC 200/220V ±10% 50/60Hz approx.2.5 VA
Max.input Available with range 50 ~300V Available with fraquency range 45 ~10kHz	Available with Max.voltage output 10V $(600~\Omega{\sim}\infty)$ Max.current output 20mA $(0~\sim550\Omega)$	DC 24V ±10% approx.2.5 W DC 100 / 110V(80~143V) ±10% approx.3 W types are immediately available. For types not listed above contact a company representative.

SPECIFIC CHARACTER

(1) Tolerance

±0.5% of output span. (Ambient temperature 23°C)

(2) Effect of temperature

Within $\pm 0.5\%$ of output span. (For $23^{\circ}C\pm 10^{\circ}C$ variations)

(3) Effect of auxiliary power supply

Within $\pm 0.25\%$ of output span. (For rated voltage $\pm 10\%$ variations)

(4) Effect of frequency

Within $\pm 0.25\%$ of output span. (For standard frequency $\pm 5\%$ variations)

(5) Effect of load resistance

Within $\pm 0.05\%$ of output span. (For load resistance range)

(6) Output ripple

Within 1%p-p of output span.

(7) Response time

Shorter than 1sec. (Time to 99% output)

(8) Effect of wave from (VGP-□E type only)

Within $\pm 0.5\%$ of output span.

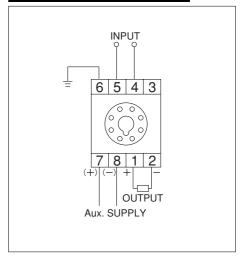
(For third harmonics equivalent to 15% of the basic frequency)

(9) Dielectric strength

2000V AC,1min.(50/60Hz)

(Between input, output, auxiliary power supply and external case)

(10) Insulation resistance


Higher than $100M\Omega$ at 500V megger.

(Between input, output, auxiliary power supply and external case)

(11) Weight

Approx.500g

CONNECTION DIAGRAM

DESIGNATION ITEM AT ORDER

1. TYPE AND AUXILIARY POWER SUPPLY	2. INPUT	3. OUTPUT
VGP−□ VGP−□E		-

	AUXILIARY POWER SUPPLY		
1	DC 24V		1
2	7.00 .0007 007 001.12		2
3	AC 200V/220V 50/60Hz		ć
5	DC 100V/110V		

	INPUT	FREQUENCY
1	AC 0 ∼ 150 V	50/60Hz
2	0 ~ 300 V	50/60Hz
9	OTHER	INPUT

	OUTPUT	LOAD RESISTANCE
1	DC 0 \sim 100mV	600Ω ~ ∞
2	DC 0~ 1 V	600Ω ~ ∞
3	DC 0~ 5 V	600Ω ~ ∞
4	DC 0~ 10 V	600Ω ~ ∞
5	DC 1~ 5 V	600Ω ~ ∞
6	DC 0 ~ 1mA	0 ~ 10kΩ
7	DC 0 ~ 10mA	0 ~ 1kΩ
8	DC 4~ 20mA	0 ~ 550 Ω
9	OTHER (OUTPUT

ORDER EXAMPLE

① VGP-1-1-8 ② VGP-2E-9-9

INPUT : AC $0\sim$ 110V, OUTPUT : DC $0\sim$ 7.5V

*For special specifications please consult company representatives.

FREQUENCY TRANSDUCER

FGP-

Plug-in type makes upkeep and changes in configuration simple. Improved reliability and greater compactness through the use of custom ICs. JIS C 1111 AC/DC transducer 0.5 class.

SPECIFICATION

INPUT,RATED VOLT,CONSUMPTION WATT	OUTPUT	AUXILIARY POWER SUPPLY		
45~55Hz 55~65Hz 55~65Hz AC 220V approx. 0.5VA	8 standard type of output are available	AC 100/110V ±10% 50/60Hz approx. 2.5 VA AC 200/220V ±10% 50/60Hz approx. 2.5 VA		
55~65Hz AC 220V	Available with	DC 24V ±10% approx. 2.5 W DC 100/110V ±10% approx. 3 W		
Working range Rated frequency range: 45Hz~450Hz Rated voltage range: 50V~300V	Max.voltage output $10V(600 \ \Omega{\sim}\infty)$ Max.current output 20 mA(0 \sim 550 Ω)	types are immediately available. For types not listed above contact a company representative.		

SPECIFIC CHARACTER

(1) Tolerance

±0.5% of output span. (Ambient temperature 23°C)

(2) Effect of temperature

Within $\pm 0.5\%$ of output span. (For 23 °C ± 10 °C variations)

(3) Effect of input voltage

Within $\pm 0.25\%$ of output span. (For rated voltage $\pm 10\%$ variations)

(4) Effect of auxiliary power supply

Within $\pm 0.25\%$ of output span. (For rated voltage $\pm 10\%$ variations)

(5) Effect of load resistance

Within $\pm 0.05\%$ of output span. (For load resistance range)

(6) Output ripple

Within 1%p-p of output span.

(7) Response time

Shorter than 2sec. (Time to 99% output)

(8) Effect of wave from

Within $\pm 0.5\%$ of output span.

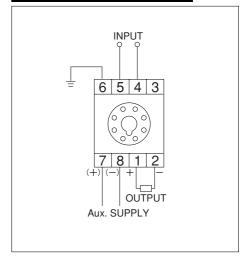
(For third harmonics equivalent to 15% of the basic frequency)

(9) Dielectric strength

2000V AC,1min.(50/60Hz)

(Between input, output, auxiliary power supply and external case)

(10) Insulation resistance


Higher than $100M\Omega$ at 500V megger.

(Between input,output,auxiliary power supply and external case)

(11) Weight

Approx.410g

CONNECTION DIAGRAM

As the FGP- is primary designed as transducer that operates within commercial frequency band power frequencies, the ordinary VT secondary voltage becomes the input.

When generator and other types of sensor output become the input the TGP- is suitable.

DESIGNATION ITEM AT ORDER

	_"	
1. TYPE AND AUXILIARY POWER SUPPLY	2. INPUT	3. OUTPUT
FGP─□	-	-

	AUXILIARY POWER SUPPLY			
1	DC 24V			
2	AC 100V/110V 50/60Hz			
3	AC 200V/220V 50/60Hz			
5	DC 100V/110V			

	INFUI	NATED VOLT.			
12	45~55Hz				
22	55~65Hz	AC 110V			
32	45~65Hz				
13	45~55Hz				
23	55~65Hz	AC 220V			
33	45~65Hz				
99	OTHER INPUT				

INDUT DATED VOLT

	OUTPUT	LOAD RESISTANCE					
1	DC 0~100mV	600Ω ~ ∞					
2	DC 0~ 1 V	600Ω ~ ∞					
3	DC 0~ 5 V	600Ω ~ ∞					
4	DC 0~ 10 V	600Ω ~ ∞					
5	DC 1~ 5 V	600Ω ~ ∞					
6	DC 0 ~ 1mA	0 ~ 10kΩ					
7	DC 0 ~ 10mA	0 ~ 1kΩ					
8	DC 4~ 20mA	0 ~ 550 Ω					
9	OTHER OUTPUT						

ORDER EXAMPLE

① FGP-1-12-8 ② FGP-2-99-9

INPUT: 45~75Hz, AC115V, OUTPUT: DC 0~7.5V

*For special specifications please consult company representatives.

WATT TRANSDUCER

EHP-1: 1phase 2wire
EHP-2: 1phase 3wire
EHP-3: 3phase 3wire

Plug-in type makes upkeep and changes in configuration simple. Improved reliability and greater compactness through the use of custom ICs. JIS C 1111 AC/DC transducer 0.5 class.

SPECIFICATION

INPUT	INPUT								
KIND	MARK	INPUT	RATED VOLTAGE	RATED CURRENT	FREQUENCY	CONSUMPTION WATT			
4 (0)4(1	0 ~ 500W	100V	5A	50/60Hz				
1 <i>∲</i> 2W EHP−□1	2	0 ~ 1000W	200V	1A	50/60Hz				
	9	OTHER							
4.40144	1	0 ~ 500W	2 ×100V	5A	50/60Hz	Voltage input : 0.5VA			
1 <i>∲</i> 3W EHP−□2	2	0 ~ 1000W	2 ×200V	5A	50/60Hz	at 1 element			
2111 🗀 2	9	OTHER				Current input : 0.5VA			
	1	$0 \sim 1000W$	110V	5A	50/60Hz	at 1 element			
0./014/	2	$0 \sim 2000W$	220V	5A	50/60Hz				
3¢3W EHP─□3	3	0 ~ 833W	110V	5A	50/60Hz				
	4	0 ~ 1667W	220V	5A	50/60Hz				
	9	OTHER							
WORKING BANGE									

WORKING RANGE

 $\begin{array}{ll} {\sf Rated\ voltage\ range} & : 60 {\sf V}{\sim} 240 {\sf V} \\ {\sf Rated\ current\ range} & : 0.1 {\sf A}{\sim} 5 {\sf A} \\ {\sf Rated\ frequency\ range} & : 45 {\sf Hz}{\sim} 450 {\sf Hz} \\ \end{array}$

Input range for working range

1phase 2wire: Input range ceiling 40%~120% of (rated voltage×rated current)
1phase 3wire: Input range ceiling 40%~120% of 2× (rated voltage×rated current)
3phase 3wire: Input range ceiling 40%~130% of [root3] × (rated voltage×rated current)

OUTPL	OUTPUT								
MARK	OUTPUT	LOAD RESISTANCE	WORKING RANGE						
1	DC 0 ~ 100mV	600 Ω ~ ∞							
2	DC 0~ 1 V	600 Ω ~ ∞							
3	DC 0~ 5 V	600 Ω ~ ∞	We also produse items not included in the output table on the left which cover the ranges below.						
4	DC 0~ 10 V	1kΩ ~ ∞	Max.voltage output: 10V						
5	DC 1 ~ 5 V	600 Ω ~ ∞	Loading current: below 10mA						
6	DC 0 ~ 1mA	0 ~ 10 kΩ	Max.current output : 20mA						
7	DC 0 ~ 10mA	0 ~ 1 kΩ	Loading voltage: below 11V						
8	DC 4 ~ 20mA	0 ~ 550 Ω							
9	OTHER	OUTPUT							

AUXILI	AUXILIARY POWER SUPPLY							
MARK	RATED	USE RANGE	CONSUMPTION WATT	REMARK				
1	DC 24V	AC 19 ~ 31 V	approx. 3 W					
2	AC 100V/110V 50/60Hz	AC 90 ~121 V	approx. 3 VA					
3	AC 200V/220V 50/60Hz	DC 180 ~242 V	approx. 3 VA	Please inquire about items not listed on the left.				
5	DC 100V/110V	DC 90~121 V	approx. 3 W					
9	OTHER							

SPECIFIC CHARACTER

(1) Tolerance

±0.5% of output span. (Ambient temperature 23 °C)

(2) Effect of temperature

Within ±0.5% of output span. (For 23 °C±10°C variations)

(3) Effect of auxiliary power supply

Within $\pm 0.25\%$ of output span. (For rated voltage $\pm 10\%$ variations)

(4) Effect of frequency

Within $\pm 0.25\%$ of output span. (For standard frequency $\pm 5\%$ variations)

(5) Effect of input voltage

Within $\pm 0.25\%$ of output span. (For standard vortage $\pm 10\%$ variations)

(6) Effect of power factor

Within $\pm 0.5\%$ of output span. (For 0.5-1 power factor variations)

(7) Effect of load resistance

Within $\pm 0.05\%$ of output span. (For load resistance range)

(8) Output ripple

Within 1%p-p of output span.

(9) Response time

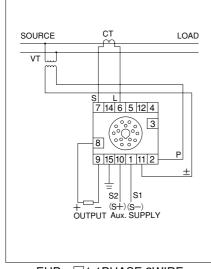
Shorter than 1sec. (Time to 99% output)

(10) Dielectric strength

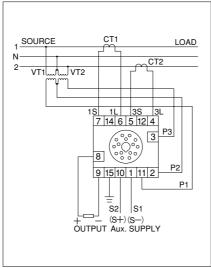
2000V AC,1min.(50/60Hz)

(Between input,output,auxiliary power and external case)

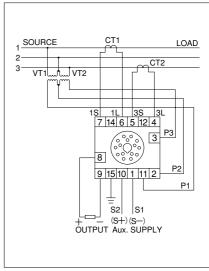
(11) Insulation resistance


Higher than $100M\Omega$ at 500V megger.

(Between input,output,auxiliary power and external case)


(12) Weight

Approx.700g


CONNECTION DIAGRAM

EHP-□2 1PHASE 3WIRE

EHP-□3 3PHASE 3WIRE

DESIGNATION ITEM AT ORDER

1. TYPE AND AUXILIARY POWER SUPPLY	2. INPUT	3. OUTPUT
EHP—□□	-	-

ORDER EXAMPLE

① EHP-23-2-8 ② EHP-23-9-9 INPUT:0~1200W,110V,5A, OUTPUT:DC:0~7.5V

**With the input code as 9,indicate the primary input, and VT ratio and CT ratio, if VT and CT are used in combination and order is made with the primary input side. In such cases the primary input, and VT ratio and CT ratio are entered on the label.

**When items from the EHP series are removed from their sockets, to prevent the input circuits from remaining open a protector(diode unit ZHP—B)is fitted. Inform us if this is not required.

*For special specification above contact a company representative

VAR TRANSDUCER

RHP-1: 1phase 2wire RHP-2: 1phase 3wire RHP-3: 3phase 3wire

Plug-in type makes upkeep and changes in configuration simple. Improved reliability and greater compactness through the use of custom ICs. JIS C 1111 AC/DC transducer 0.5 class.

SPECIFICATION

INPUT	INPUT							
KIND	MARK	INPUT	RATED VOLT.	RATED CUR.	FREQUENCY	CONSUMPTION WATT		
	1	LEAD 500 ~ 0 ~ LAG 500 var	100V	5A	50Hz			
1 <i>∲</i> 2W	2	LEAD 500 ~ 0 ~ LAG 500 var	100V	5A	60Hz			
1 <i>φ</i> 2 <i>νν</i> RHP-□1	3	LEAD 1000 ~ 0 ~ LAG1000 var	200V	5A	50Hz			
	4	LEAD 1000 ∼ 0 ∼ LAG1000 var	200V	5A	60Hz			
	9	OTHER						
	1	LEAD 1000 ~ 0 ~ LAG1000 var	2×100V	5A	50Hz	Voltage input : 0.5VA		
4.40144	2	LEAD 1000 ~ 0 ~ LAG1000 var	2 ×100V	5A	60Hz	at 1 element		
1 <i>∲</i> 3W RHP−□2	3	LEAD 2000 ~ 0 ~ LAG2000 var	2 ×200V	5A	50Hz	Current input : 0.5VA		
	4	LEAD 2000 ~ 0 ~ LAG2000 var	2×200V	5A	60Hz	at 1 element		
	9	OTHER						
	1	LEAD 1000 ~ 0 ~ LAG1000 var	110V	5A	50/60Hz			
	2	LEAD 2000 ~ 0 ~ LAG2000 var	220V	5A	50/60Hz			
3¢3W RHP−□3	3	LEAD 833 ~ 0 ~ LAG 833 var	110V	5A	50/60Hz			
HIII 🗀 S	4	LEAD 1667 ~ 0 ~ LAG1667 var	220V	5A	50/60Hz			
	9	OTHER						

Note: 1.1phase 2wire and 1phase 3wire devices are set for a frequency of either 50Hz or 60Hz.

3phase line devices can operate at either 50Hz or 60Hz.

It is necessary to balance the voltage circuits of 3phase 3wire devices. However,the current will behave normally if the circuits are not balanced.

WORKING RANGE

Rated voltage range : 60V~240V Rated current range : 0.1A~5A Rated frequency range : 45Hz~450Hz

Input range for working range

1phase 2wire: Input range ceiling 40%~120% of (rated voltage×rated current)
1phase 3wire: Input range ceiling 40%~120% of 2× (rated voltage×rated current)
3phase 3wire: Input range ceiling 40%~130% of [root3]× (rated voltage×rated current)

OUTPU	OUTPUT						
MARK	OUTPUT	LOAD RESISTANCE	WORKING RANGE				
1	$-100 \sim 0 \sim +100 \mathrm{mV}$	600 Ω ~ ∞	Max.voltage output : 10V,Loading current : below 10mA				
2	$-1 \sim 0 \sim +1 V$	600 Ω ~ ∞	Max.current output : 20mA,Loading voltage : below 11V				
3	$-5 \sim 0 \sim +5 V$	600 Ω ~ ∞	Relationship between input and output Lead side input for minus output and Lag side input for positive output are standard.				
4	$-10 \sim 0 \sim +10 \text{ V}$	1kΩ ~ ∞					
5	1~3~ 5 V	600 Ω ~ ∞	•We can also make items that allow Lag side input for minus output and Lead side input				
6	$-$ 1 \sim 0 \sim $+$ 1 mA	$0 \sim 10 k\Omega$	for positive output.				
7	$-$ 10 \sim 0 \sim $+$ 10 mA	$0 \sim 1 k\Omega$					
8	4 ~12~ 20 mA	$0 \sim 550 \Omega$					
9	OTHER OUT	PUT					

AUXILI	AUXILIARY POWER SUPPLY							
MARK	RATED	USE RANGE	CONSUMPTION WATT	REMARK				
1	DC 24V	AC 19 ~ 31 V	approx. 3 W					
2	AC 100V/110V 50/60Hz	AC 90 ~121 V	approx. 4 VA					
3	AC 200V/220V 50/60Hz	DC 180 ~242 V	approx. 4 VA	Please inquire about items not listed on the left.				
5	DC 100V/110V	DC 80 ∼143 V	approx. 3 W					
9	OTHER							

SPECIFIC CHARACTER

(1) Tolerance

 $\pm 0.5\%$ of output span. (Ambient temperature 23 °C)

(2) Effect of temperature

Within $\pm 0.5\%$ of output span. (For 23 °C ± 10 °C variations)

(3) Effect of auxiliary power supply

Within $\pm 0.25\%$ of output span. (For rated voltage $\pm 10\%$ variations)

(4) Effect of frequency

Within $\pm 0.25\%$ of output span. (For standard frequency $\pm 5\%$ variations)

(5) Effect of input voltage

Within $\pm 0.25\%$ of output span. (For standard vortage $\pm 10\%$ variations)

(6) Effect of power factor

Within $\pm 0.5\%$ of output span. (For 0.5-1 reactive factor variations)

(7) Effect of load resistance

Within $\pm 0.05\%$ of output span. (For load resistance range)

(8) Output ripple

Within 1%p-p of output span.

(9) Response time

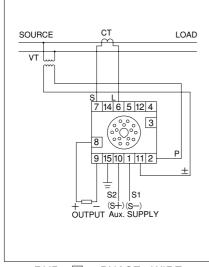
Shorter than 1sec. (Time to 99% output)

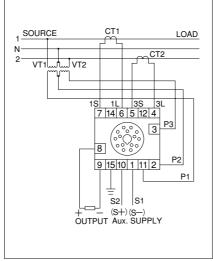
(10) Dielectric strength

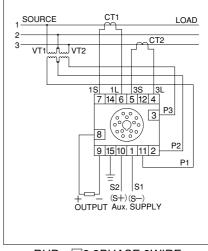
2000V AC,1min. (50/60Hz)

(Between input, output, auxiliary power and external case)

(11) Insulation resistance


Higher than $100M\Omega$ at 500V megger.


(Between input,output,auxiliary power and external case)


(12) Weight

Approx.700g

CONNECTION DIAGRAM

RHP-1 1PHASE 2WIRE

RHP-2 1PHASE 3WIRE

RHP-□3 3PHASE 3WIRE

DESIGNATION ITEM AT ORDER

1. TYPE AND AUXILIARY POWER SUPPLY	2. INPUT	3. OUTPUT
RHP—□□	-	-

ORDER EXAMPLE

① RHP-23-2-8 ② RHP-23-9-9 INPUT : 0~1200var,110V,5A, OUTPUT : DC0~7.5V

₩With the input code as 9,indicate the primary input,and VT ratio and CT ratio,if VT and CT are used in combination and order is made with the primary input side. In such cases the primary input, and VT ratio and CT ratio are entered on the label.

*When items from the RHP series are removed from their sockets, to prevent the input circuits from remaining open a protector(diode unit ZHP-B)is fitted. Inform us if this is not required.

% For special specification above contact a company representative.

POWER FACTOR TRANSDUCER

NHP-1: 1 phase 2wire
NHP-2: 1 phase 3wire
NHP-3: 3 phase 3wire

Plug-in type makes upkeep and changes in configuration simple. Improved reliability and greater compactness through the use of custom ICs. JIS C 1111 AC/DC transducer 2.0 class.

SPECIFICATION

INPUT						
KIND	MARK	INPUT	RATED VOLT.	RATED CUR.	FREQUENCY	CONSUMPTION WATT
	1	LEAD $0.5 \sim 1 \sim LAG~0.5$	100V	5A	50Hz	
1.40\\\	2	LEAD $0.5 \sim 1 \sim LAG~0.5$	100V	5A	60Hz	
1 <i>∲</i> 2W NHP—⊡1	3	LEAD $0.5 \sim 1 \sim LAG~0.5$	200V	5A	50Hz	
	4	LEAD $0.5 \sim 1 \sim LAG~0.5$	200V	5A	60Hz	
	9	OTHER				
	1	LEAD $0.5 \sim 1 \sim LAG~0.5$	2×100V	5A	50Hz	Voltage input:0.5VA at 1 element
4 /014/	2	LEAD $0.5 \sim 1 \sim LAG~0.5$	2 ×100V	5A	60Hz	
1 <i>∲</i> 3W NHP−□2	3	LEAD $0.5 \sim 1 \sim LAG~0.5$	2 ×200V	5A	50Hz	Current input:0.5VA
14111 🗀 2	4	LEAD $0.5 \sim 1 \sim LAG~0.5$	2×200V	5A	60Hz	at 1 element
	9	OTHER				
	1	LEAD 0.5 ∼ 1 ∼ LAG 0.5	110V	5A	50/60Hz	
3 <i>∲</i> 3W	2	LEAD 0.5 ∼ 1 ∼ LAG 0.5	220V	5A	50/60Hz	
NHP-□3						
	9	OTHER				

Note: 1. 1 phase 2wire and 1 phase 3wire devices are set for a frequency of either 50Hz or 60Hz.

3phase line devices can operate at either 50Hz or 60Hz.

WORKING RANGE

 $\begin{array}{lll} \mbox{Rated voltage range} & :60\mbox{V\sim$}240\mbox{$V$} \\ \mbox{Rated current range} & :0.1\mbox{A\sim$}5\mbox{$A$} \\ \mbox{Rated frequency range} & :45\mbox{Hz\sim$}450\mbox{$Hz$} \\ \end{array}$

Input range for working range : LEAD 0.5 \sim 1 \sim LAG 0.5 or LAG 0.5 \sim 1 \sim LEAD 0.5

OUTPUT				
MARK	OUTPUT	LOAD RESISTANCE	WORKING RANGE	
1	$-100 \sim 0 \sim +100 \mathrm{mV}$	600 Ω ~ ∞	Max.voltage output : 10V,Loading current : below 10mA	
2	$-1 \sim 0 \sim +1 V$	600 Ω ~ ∞	Max.current output : 20mA,Loading voltage : below 11V	
3	- 5 ~ 0 ~+ 5 V	600 Ω ~ ∞	Relationship between input and output	
4	- 10 ~ 0 ~+ 10 V	1kΩ ~ ∞	·Lead side input for minus output and Lag side input for positive output are standard.	
5	1 ~ 3 ~ 5 V	600 Ω ~ ∞	•We can also make items that allow Lag side input for minus output and Lead side input for	
6	$-1 \sim 0 \sim +1 \text{ mA}$	0 ~ 10 kΩ	positive output.	
7	$-10 \sim 0 \sim +10 \text{mA}$	0 ~ 1 kΩ	 We can also produce items that at LEAD 0.5~1~LAG 0.5 have—50%~—/+100%~+50% characteristics. 	
8	4 ~12~ 20 mA	0 ~ 550 Ω		
9	OTHER OUTPUT			

AUXILI	AUXILIARY POWER SUPPLY						
MARK	RATED	USE RANGE	CONSUMPTION WATT	REMARK			
1	DC 24V	AC 19 ~ 31 V	approx. 3 W				
2	AC 100V/110V 50/60Hz	AC 90 ~121 V	approx. 4 VA				
3	AC 200V/220V 50/60Hz	DC 180 ~242 V	approx. 4 VA	Please inquire about items not listed on the left.			
5	DC 100V/110V	DC 80 ∼143 V	approx. 3 W				
9	OTHER						

^{2.} It is necessary to balance the voltage circuits of 3phase 3wire devices. However,the current will behave normally if the circuits are not balanced.

SPECIFIC CHARACTER

(1) Tolerance

±2% of output span. (Ambient temperature 23 °C)

(2) Effect of temperature

Within $\pm 0.5\%$ of output span. (For 23 °C ± 10 °C variations)

(3) Effect of auxiliary power supply

Within $\pm 0.25\%$ of output span. (For rated voltage $\pm 10\%$ variations)

(4) Effect of frequency

Within $\pm 1.5\%$ of output span. (For standard frequency $\pm 5\%$ variations)

(5) Effect of input voltage

Within $\pm 1.5\%$ of output span. (For standard voltage $\pm 10\%$ variations)

(6) Effect of input current

Within±3% of output span. (For 20%-120% rated current variations)

(7) Effect of load resistance

Within $\pm 0.05\%$ of output span. (For load resistance range)

(8) Output ripple

Within 1%p-p of output span.

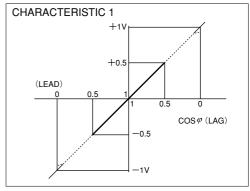
(9) Response time

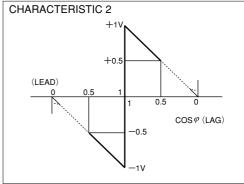
Shorter than 1sec. (Time to 99% output)

(10) Dielectric strength

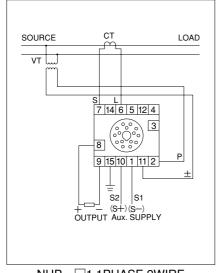
2000V AC,1min. (50/60Hz)

(Between input,output,auxiliary power and external case)

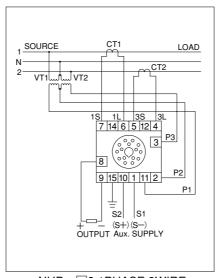

(11) Insulation resistance

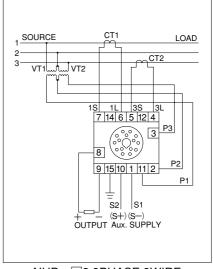

Higher than $100M\Omega$ at 500V megger.

(Between input,output,auxiliary power and external case)


(12) Weight

Power factor transducer may have the two types of characterristics shown below. If no preference is specified characteristics will be as shown in 1.




CONNECTION DIAGRAM

NHP-□2 1PHASE 3WIRE

NHP-□3 3PHASE 3WIRE

DESIGNATION ITEM AT ORDER

1. TYPE AND AUXILIARY POWER SUPPLY	2. INPUT	3. OUTPUT
NHP—□□	-	-

ORDER EXAMPLE

① NHP-23-2-8 ② NHP-23-9-8 INPUT : LEAD 0.5~1~LAG 0.5,115V,5A

*Power factor measurement in circuits that have tidal currents

The effective measurement range of NHP type power factor transducers is LEAD 0.5~1~LAG 0.5. Does not operate normally during backward tidal current (the current supply and receipt flow are reversed).

*When items from the NHP series are removed from their sockets, to prevent the input circuits from remaining open a protector(diode unit ZHP—B)is fitted. Inform us if this is not required.

*For special specification above contact a company representative